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Abstract 
Processor allocation strategies that had been devised for mesh-connected 

multicomputers are classified into two types, contiguous and non-contiguous. In 

contiguous strategies, the allocated processors must be physically adjacent, and form a 

contiguous shape similar to the original topology. Contiguous allocation suffers from 

both external and internal fragmentation problems. In non-contiguous allocation 

strategies, the job request can execute on multiple separated smaller sub-meshes 

rather than waiting until a single sub-mesh of the requested size and shape is available.  

There are many proposed strategies for non-contiguous allocation that have different 

levels in working to balance between distributing the requested job among the 

processors in the mesh, and keeping a good level of contiguity between the allocated 

processors. 
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In this research, we have proposed a new non-contiguous processor allocation strategy 

for 2D mesh-connected multicomputers, referred to as Horizontal Partitioning Strategy 

(HPS) that partitions the job request based on the sub-meshes available for allocation in 

the system so as to maintain some degree of contiguity. These sub-meshes are called 

Free-rows, and each of them represents a row of free processors that is equal to the 

width of the mesh. HPS strategy rebuilds the job request to accommodate in Free-rows 

and it always tries to allocate a job request contiguously in Free-rows in order to 

decrease the distance traversed by a message, and hence reduce the message 

contention inside the network. 

Using simulation, we compared the performance of HPS with the existing well-known 

non-contiguous allocation strategies Paging(0), MBS, and GABL. The results show that 

the performance of HPS allocation strategy is much better than that of other non-

contiguous allocation strategies for both job size distributions considered when the all-

to-all communication pattern is used, and it is close to that of the non-contiguous 

allocation strategies considered when the one-to-all and random communication 

patterns are used. Moreover, HPS exhibits high system utilization as it manages to 

eliminate both internal and external fragmentation. 
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Chapter 1  

1. Introduction 
     

1.1. Overview 

Progress in technology has made the technique of constructing parallel computers with 

a large number of processors viable, and the availability of reasonably priced 

processors and high-speed networks have made it viable to develop programs that use 

distributed resources (Foster, 1995). 

A parallel computer is primarily based at the concept of employing multiple resources to 

solve a specific problem. To implement this concept, it is necessary to divide the 

problem into small problems, after which the available resources are allocated to these 

problems in order to resolve those small problems within the form of general solution, 

where these partial problems may be separated or can also be overlapped (Foster, 

1995; Kumar, Grama, Gupta, & Karypis, 2003). 

The vast computational power of parallel computers greatly reduces the time of 

executing the program, which enables solutions to huge and complicated problems that 

had been lengthy or intractable without parallel processing, such as weather forecasting 

management in the atmosphere (Foster, 1995; Kumar, Grama, Gupta, & Karypis, 2003). 

A Parallel computer is a set of processors that can cooperate with each other to achieve 

parallel processing for diverse computational needs, and a parallel program is the 

program that can be executed on multiprocessors (Foster, 1995; Bani Mohammad, 

2008). In parallel computing, we are able to save time, resolve larger problems, and 

reduce cost by means of using multiple “cheap” computing resources in place of paying 

for time on a supercomputer (Foster, 1995; Kumar, Grama, Gupta, & Karypis, 2003). 
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Parallel computers are divided into two classes: Shared memory computer systems and 

distributed memory computer systems. In Shared memory computers, additionally 

known as multiprocessors, all processors share access to a common memory, typically 

via a bus interconnection network. In distributed memory computers, additionally known 

as multicomputers, each processor in the system has its own local memory and can 

communicate with the other processors by sending messages through an 

interconnected network (Bani Mohammad, 2008). 

Parallel computers are constructed by connecting processors and memory to hold data 

using various interconnection networks. These networks can be categorized into two 

types: direct connection networks and indirect connection networks. Direct networks 

have point-to-point communication links among processing nodes, and these networks 

are static, which means that the nodes are directly connected to each other (i.e., point-

to-point connection). Some examples of direct networks are star-connected network, 

linear arrays, and meshes (Kumar, Grama, Gupta, & Karypis, 2003). In indirect 

networks, the nodes are connected to each other via switches (Kumar, Grama, Gupta, 

& Karypis, 2003; Mohapatra, 1998), and it may be subdivided into three parts: bus 

networks, multistage networks and crossbar switches (Kumar, Grama, Gupta, & 

Karypis, 2003). 

A 2D mesh interconnection network is an example of direct networks, where each node 

in the system has a direct connection to its neighbors. The mesh network is 

straightforward, scalable to implement and popular in multicomputers (Adve & Vernon, 

1994). 
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Figure 1.1 shows an example of a 6×6 2D mesh, where allocated processors are 

denoted by black circles and free processors are denoted by white circles. 

 

 : Allocated 

 : Free 

 

      

      

      

      

      

      

Figure 1-1: An example of a 6×6 2D mesh 

 

The performance of a multicomputer system depends on the processor allocation and 

job scheduling strategies used. The processor or sub-mesh allocator is responsible for 

allocating a certain sub-mesh of free processors to incoming jobs, where the sub-mesh 

is held by the job for a particular computation and released after computation, while the 

job scheduler is responsible for determining the order of the jobs to be scheduled 

(Babbar & Krueger, 1994; Bani Mohammad, 2008). 

1.2. Processor Allocation  

Many processor allocation strategies had been devised for mesh-connected 

multicomputers, and these can be classified into two main categories: contiguous and 

non-contiguous allocation strategies (Bani Mohammad, 2008). 

  



www.manaraa.com

 
 

4 
 

Contiguous strategies depend mainly on the processors that will be allocated to a job in 

mesh network and that they must be physically adjacent, and form a contiguous shape 

according to the original topology (Lo, Windisch, Liu, & Nitzberg, 1997). This causes 

external and internal fragmentation problems. The processor allocation strategy 

produces external fragmentation when there are free processors enough in number to 

satisfy the job request, but they are not allocated to it because they are not contiguous, 

while internal fragmentation occurs when the allocation strategy allocates more 

processors than its requested (Lo, Windisch, Liu, & Nitzberg, 1997; Bani Mohammad, 

2008). 

Figure 1.2-A shows an example of internal fragmentation when four processors are 

assigned to a new job that only requests two processors, the black frame shows the set 

of allocated processors for the new job request, while the number of requested 

processors is shown in black circles. Figure 1.2-B shows an example of external 

fragmentation, assuming a contiguous allocation strategy is used, where the incoming 

job requests four processors that are available in the system, but these processors are 

not allocated to the job because they are not contiguous. 

 

 

 

 

 

 

 

A: Internal fragmentation in 4×3 2D mesh 

    

    

    

 

 

 

 

 

 

 

B: External fragmentation in 4×3 2D 

mesh 

    

    

    

Figure 1-2: Internal and External Fragmentation 

  



www.manaraa.com

 
 

5 
 

The restriction that jobs have to be allocated to contiguous processors reduces the 

chance of successfully allocating a job, and it is viable for the allocation strategy to fail 

to allocate a job even as there are enough number of processors available in the mesh 

system (Bani Mohammad, 2008; Bani-mohammad, Ould-KHaoua, Ababneh, & 

Mackenzie, 2006). 

In non-contiguous allocation strategies, a job can execute on multiple separated smaller 

sub-meshes rather than waiting until a single sub-mesh of the requested size and shape 

is available.  There are many proposed strategies for non-contiguous allocation that 

differ in distributing the requested job among the processors in the mesh. Although 

these strategies keep a level of contiguity between the allocated processors, they may 

cause high communication overhead by increasing message contention inside the 

network (Ababneh & Almomani, 2012; Bani Mohammad, 2008). However, dropping the 

contiguity condition can reduce processor fragmentation and increase system utilization, 

but it is able to cause high communication overhead, which may be alleviated by 

maintaining a good degree of contiguity between the allocated processors (Ababneh & 

Almomani, 2012; Lo, Windisch, Liu, & Nitzberg, 1997; Bani-mohammad, Ould-KHaoua, 

& Ababneh, 2007). The system utilization is the percentage of processors that are 

utilized over time (ProcSimity v4.3, 1996). 

1.3. Motivation and Contribution 

Many processor allocation strategies devised for 2D mesh-connected multicomputers 

suffer from several problems that include external fragmentation, internal fragmentation, 

and message contention in the network. The primary purpose of any non-contagious 

allocation strategy is to enhance the system performance with the aid of reducing the 

job turnaround time and maximizing the system utilization (Chang & Mohapatra, 1998; 

Lo, Windisch, Liu, & Nitzberg, 1997; Bani Mohammad, 2008), where job turnaround 

time is the time that the job spends in the system from arrival to departure (Bani-

mohammad, Ould-KHaoua, Ababneh, & Mackenzie, 2006). 
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The performance of any non-contiguous allocation strategy is affected by the degree of 

contiguity between the allocated processors and also by the topology of these 

processors. This is because in a heavy system loads, the degree of contiguity between 

allocated processors affects on the communication overhead. When the degree of 

contiguity is increased, the communication overhead is decreased and thus the system 

performance is improved in terms of job turnaround time (Lo, Windisch, Liu, & Nitzberg, 

1997; Bani-mohammad, Ould-KHaoua, & Ababneh, 2007).  

Motivated by the above observations and the preceding research findings (Bani-

Mohammad, Ababaneh, & Hamdan, 2010; Babbar & Krueger, 1994; Lo, Windisch, Liu, 

& Nitzberg, 1997; Bani Mohammad, 2008; Bani-mohammad, Ould-KHaoua, Ababneh, & 

Mackenzie, 2006), there is a need to propose a new non-contiguous allocation strategy 

to investigate a good degree of contiguity in order to improve the system performance. 

To achieve this, we propose a new non-contiguous allocation strategy suggested for 2D 

mesh-connected multicomputers that maintains a high degree of contiguity among 

allocated processors via partitioning the job request based totally on the sub-meshes 

available for allocation inside the system. These sub-meshes are called Free-rows, and 

each of them represents a row of free processors that equal the width of the mesh 

system. The proposed strategy continually tries to allocate a job request contiguously in 

Free-rows in order to decrease the distance traversed by jobs' messages, and therefore 

reduce message contention inside the network. 

The proposed strategy maintains some degree of contiguity between the allocated 

processors, which in turn reduces the communication overhead between these 

processors, and hence improves system performance in terms of job turnaround time 

(Bani-Mohammad, Ababaneh, & Hamdan, 2010; Bani Mohammad, 2008).The 

performance of the proposed strategy is compared against that of the existing non-

contiguous allocation strategies Random (Lo, Windisch, Liu, & Nitzberg, 1997), 

Paging(0) (Lo, Windisch, Liu, & Nitzberg, 1997), MBS (Lo, Windisch, Liu, & Nitzberg, 

1997) and GABL (Bani Mohammad, 2008).  
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The simulation results display that our strategy performs much better than the previous 

non-contiguous allocation strategies considered in this thesis in terms of job turnaround 

time when the all-to-all communication pattern is used. This is because all-to-all 

communication is considered to be the weak point of the non-contiguous allocation 

strategies because it produces much message collision (Suzaki, et al., 1996; Alsardia, 

2017), and our strategy has been proposed to alleviate this collision by maintaining 

some degree of contiguity between allocated processors. 

The results also showed that the performance of our strategy is close to that of the non-

contiguous allocation strategies considered when the one-to-all and random 

communication patterns are used. This is because in these communication patterns, the 

number of messages generated by jobs is small as compared with the all-to-all 

communication pattern and thus all the non-contiguous allocation strategies considered 

in this thesis including our proposed strategy have the same ability to alleviate the 

contention inside the network. Also, the performance of the proposed strategy is not 

better than that of the other non-contiguous allocation strategies considered when the 

near-neighbor communication pattern is used, and this is because the near-neighbor 

communication pattern is suitable for the strategies that keep a high degree of contiguity 

and maintain a rectangular form of the allocated sub-meshes (Alsardia, 2017). 

 

1.4. Outline of the Thesis 

The rest of the thesis is organized as follows: 

Chapter 2 describes the well-known non-contiguous processor allocation strategies that 

have been proposed for 2D mesh-connected multicomputers, it also presents the 

method of study used in this thesis. 
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Chapter 3 introduces the proposed allocation strategy, A Horizontal Partitioning Non-

Contiguous Processor Allocation Strategy for 2D Mesh-Connected Multicomputers 

(HPS), and presents the definitions and features for the proposed strategy. The 

allocation and de-allocation process are explained in this chapter. 

In chapter 4, the simulation experiments are analyzed and the performance of the 

proposed strategy has been compared against that of the existing well-known non-

contiguous allocation.  

Chapter 5 concludes this thesis and introduces some directions for future work. 

  



www.manaraa.com

 
 

9 
 

Chapter 2  

2. Background and Preliminaries 
 

2.1. Related Work 

 

There are many proposed non-contiguous allocation strategies for 2D mesh connected 

multicomputers and this is a brief review of them. 

2.1.1. Random allocation strategy: 

Random strategy has been proposed to allocate any size of job request that the mesh 

can consist, via allocating them randomly one by one inside the 2D mesh. This strategy 

gives relatively great system utilization, because it allocates the same size of the job 

request within the mesh and it does not cause any internal or external fragmentation, 

however, the random allocation strategy has excessive communication overhead 

because the contiguity among the allocated processors is not taken into consideration in 

this strategy (Lo, Windisch, Liu, & Nitzberg, 1997). 

2.1.2. Paging allocation strategy: 

In this strategy, initially the mesh is divided into pages, the page is the basic unit of 

allocation and it is a square sub-mesh of processors. The page size is equal to 

2𝑃𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 , where the page_size is a positive integer. The order of the processors in the 

pages and the order of the pages within the mesh are determining by using four 

indexing scheme, row-major, shuffled row-major, snake-like and shuffled snake-like. 

The paging strategy is indicated as Paging indexing_scheme(page_size)  (Lo, 

Windisch, Liu, & Nitzberg, 1997). 
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Figure 2-1 shows the four indexing schemes, where figure 2-1.A shows a row-major 

indexing, figure 2-1.B shows a shuffled row-major indexing, figure 2-1.C shows a snake-

like indexing and figure 2-1.D shows a shuffled snake-like indexing. 

12 13 14 15 

8 9 10 11 

4 5 6 7 

0 1 2 3 

 

A: Row-Major 

10 11 14 15 

8 9 12 13 

2 3 6 7 

0 1 4 5 

 

 B: Shuffled Row-

Major 

15 14 13 12 

8 9 10 11 

7 6 5 4 

0 1 2 3 

 

          C: Snake-

Like 

15 14 11 10 

12 13 8 9 

3 2 7 6 

0 1 4 5 

 

D: Shuffled Snake-

Like 

Figure 2- 1: Four different indexing schemes used by the Paging strategy 

A request for 𝑛 processors is accomplished by allocating: 

⌈
𝑛

2𝑃𝑎𝑔𝑒_𝑠𝑖𝑧𝑒∗2𝑃𝑎𝑔𝑒_𝑠𝑖𝑧𝑒
⌉ free pages. 

Figure 2-2 shows an example of the Paging allocation, which uses the snake-like 

indexing scheme and a page size of one (2×2 blocks) indicating as Pagingsnake-like(1). 

Assume a job requests for ten processors. By using the Free Page List (FPL), which is 

an ordered list that keeps track of all the unallocated pages (Lo, Windisch, Liu, & 

Nitzberg, 1997), the first three items in FPL (3rd, 4th and 6th) as shown in figure 2-2 are 

removed and the twelve processors are allocated, and this causes an internal 

fragmentation of 16%.  
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<0,8>  <8,8> 

         

15  14  13  12  

        

8  9  10  11  

        

7  6  5  4  

        

0  1  2  3  
 

 

<0,0>  <8,0> 
 

 

FPL     ↓ 

<6,0> 3 
 

<6,2> 4 
 

<2,2> 6 
 

<0,2> 7 
 

<0,4> 8 
 

<4,6> 13 
 

<0,6> 15 
 

 Allocated  Unallocated 
 

Figure 2- 2: Example of mesh and free page list for the Paging snake-like (1) allocation 

 

This strategy gives some contiguity by allocating processors into pages, but this causes 

an internal fragmentation when the page_size > 0, and there is no internal or external 

fragmentation when page_size is 0 (Lo, Windisch, Liu, & Nitzberg, 1997; Bani-

Mohammad, Ababaneh, & Hamdan, 2010). 

2.1.3. Multiple Buddy Strategy (MBS): 

This strategy divides initially the 2D mesh into distinct square sub-meshes that are 

allocated as non-contiguous blocks, where the side length of these blocks is power of 2 

upon initialization. MBS keeps up free block records (FBR) for all free processor 

squares of a similar size. The entry FBR[𝑖] includes the number of available squares of 

size 2𝑖x2𝑖, and the job size of 𝑛 processors is represented as a base-4 number of the 

form: 
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∑ 𝑑𝑖(2
𝑖𝑥2i)

⌊log4 𝑘⌋

𝑖=0
  where   0 ≤ 𝑑𝑖 ≤ 3 . 

The allocation of the job request is determined according to the number of 𝑑𝑖 blocks of 

size 2𝑖x2𝑖 processors using FBR. If a required block is unavailable then the strategy 

searches for a larger block in FBR and breaks it down into four adjacent buddies until it 

reaches the proper size. Allocation in the MBS strategy succeeds when the number of 

free processors in the mesh is sufficient. MBS does not produce any internal or external 

fragmentation problems (Lo, Windisch, Liu, & Nitzberg, 1997; Bani-mohammad, Ould-

KHaoua, Ababneh, & Mackenzie, 2006). 

2.1.4. Greedy-Available Busy List Allocation Strategy (GABL): 

In this strategy, the job request is  divided based on the available sub-meshes for 

allocation in the mesh, and it tries contiguously to allocate the entire job request in a 

single available sub-mesh. If the allocation fails, GABL allocates the largest free sub-

mesh that is available in the mesh and can fit inside the job request, then tries to 

allocate the next large sub-mesh whose side lengths do not exceed the side lengths of 

the previously allocated sub-mesh, and this step is repeated until the job request is 

allocated (Bani Mohammad, 2008; Bani-mohammad, Ould-KHaoua, & Ababneh, 2007). 

Figure 2.3 shows an example of the GABL allocation strategy of a 6×6 2D mesh, where 

allocated processors are denoted by black circles and free processors are denoted by 

white circles. Assume a job requests for ten processors (5×2). GABL scans the mesh 

and tries to allocate this job request contiguously. It fails, and then it allocates the 

largest free sub-mesh that is available inside the mesh and can fit inside the job 

request. In this case a 2×3 available sub-mesh of processors has the coordinates 

(1,1,3,2) is allocated, where the first two coordinates identify the lower left corner of the 

sub-mesh and the last two coordinates identify the upper right corner of the sub-mesh, 

then it continues to allocate another sub-mesh (4,0,5,1).  
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 : Free 

 

      

      

      

      

      

      

Figure 2- 3: Allocation in GABL Allocation Strategy 

GABL decreases the message communication overhead by maintaining a high level of 

contiguity through dividing the job request into several large free sub-meshes that are 

available in the mesh system (Bani Mohammad, 2008; Bani-mohammad, Ould-KHaoua, 

& Ababneh, 2007). 

2.2. System Model 

The switching method is used in most multicomputer system to transfer a message from 

a source to destination through a series of intermediate nodes. The switching 

techniques has a large effect on the communication latency inside the direct network, 

and the most important switching techniques that have been used in multicomputer 

system are Store-and-forward (Kumar, Grama, Gupta, & Karypis, 2003), Virtual cut-

through and Wormhole switching (Mohapatra, 1998; Kumar, Grama, Gupta, & Karypis, 

2003; Ni & McKinley, 1993).  
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The switching method used in this thesis is the wormhole switching (moreover known as 

wormhole routing) to decide the way messages are handled as they travel through 

intermediate nodes, and it is used to offer low communication latency and reduce buffer 

requirements (Kumar, Grama, Gupta, & Karypis, 2003; Mohapatra, 1998; Ni & 

McKinley, 1993).  

Wormhole routing has been utilized in almost all new generation of parallel computer 

systems which includes the iWARP (Peterson, Sutton, & Wiley, 1991), the MIT j-

machine (Noakes, Wallach, & Dally, 1993), the intel Paragon (Intel Corporation, 1991) 

and the IBM BlueGene/L (Blue Gene Project, 2010). It has been a powerful switching 

technique where its communication latency is distance insensitive (Kumar, Grama, 

Gupta, & Karypis, 2003; Mohapatra, 1998; Ni & McKinley, 1993). 

Wormhole routing is used in this thesis because it is widely used in realistic 

multicomputer and also it has been used when examining the performance of the 

existing non-contiguous allocation strategies. This is because of its low buffering 

requirement and appropriate overall performance (Lo, Windisch, Liu, & Nitzberg, 1997; 

Bani-mohammad, Ould-KHaoua, & Ababneh, 2007). 

Mesh interconnection network is assumed in this thesis as the network topology. This is 

because of its good characteristics such as ease of implementation, simplicity, structural 

regularity and scalability. Mesh networks are easily implemented because of the simple 

regular connection and small number of links per node (Bani Mohammad, 2008).  

Dimension-ordered routing in 2D mesh is performed via XY routing. The two dimensions 

of a mesh are labeled as X and Y. The source node sends a message first through X 

axis right or left then through Y axis up or down depending on the location of destination 

node. Dimension-ordered routing is used in this thesis because it has been used in 

existing non-contiguous allocation strategies (Lo, Windisch, Liu, & Nitzberg, 1997; Bani 

Mohammad, 2008). 
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In this thesis, we use four communication patterns in the simulation to assess and 

compare the overall performance of the non-contiguous allocation strategies. These 

communication patterns are random, near-neighbor, one-to-all and all-to-all (ProcSimity 

v4.3, 1996; Bani-Mohammad & Ababneh, 2013).  

In random communication pattern, the source and destinations are selected randomly 

(ProcSimity v4.3, 1996). 

In near-neighbor communication pattern, each processor allocated to a job sends a 

message to its neighbor processors, up, down, left and right (ProcSimity v4.3, 1996).  

In one-to-all communication pattern, a randomly selected processor sends a message 

to all other processors allocated within the same job (ProcSimity v4.3, 1996). 

In all-to-all communication pattern, every processor allocated to a job sends a message 

to every other processor allocated within the same job (Bani-Mohammad & Ababneh, 

2013).  

 

2.3. The Simulation Tool (ProcSimity Simulator) 

ProcSimity is a simulation tool for research in processor allocation and job scheduling 

algorithms for the mesh-connected multicomputers, and it is an open-source code, 

which was written in the C programming language at the University of Oregon 

(ProcSimity v4.3, 1996). 
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ProcSimity provides a suitable environment for evaluating processor allocation and job 

scheduling algorithms for the mesh-connected multicomputers, and it is used to 

investigate various job scheduling and processor allocation strategies performance, 

such as fragmentation problem and communication overhead. ProcSimity architecture 

supports the mesh interconnection topology by consisting of a network of processors 

interconnected through message routers at each node. Neighbors' nodes are connected 

by two unidirectional channels, and it may be routed messages by either store-and-

forward, virtual cut through or wormhole switching (Bani-mohammad, Ould-KHaoua, & 

Ababneh, 2007; Lo, Windisch, Liu, & Nitzberg, 1997; Mohapatra, 1998; ProcSimity v4.3, 

1996; Windisch, Miller, & Lo, 1995). 

In ProcSimity, job scheduling controls the selections of the next job for which 

processors are to be allocated. When the next independent user job arrives, it requests 

sub-mesh of free processors. If the mesh has sufficient processors for an incoming job, 

then the free processors are allocated to that job, if the number of free processors is not 

enough to satisfy the job request in the mesh, or there are other waiting job in the 

waiting queue, the incoming job is diverted to the waiting queue. The job is selected to 

be executed from the waiting queue based on the underlying scheduling strategy. When 

a job is ready to be executed, the job allocation algorithm assigns it to the available sub-

meshes of processors in the mesh, which may be contiguous or non-contiguous, 

depending on the allocation strategy used. The execution job still holds the processors 

until it terminates its running, when it departs the system, the allocated processors are 

freed for use by another incoming job request (ProcSimity v4.3, 1996; Windisch, Miller, 

& Lo, 1995). 

Each simulation run carries the values of the measured metrics that include system 

utilization, turnaround time, service time and finish time, and the very last simulation 

results are averaged over enough runs in order that the confidence level is 95% and 

relative errors do not exceed 5% (ProcSimity v4.3, 1996; Windisch, Miller, & Lo, 1995).  
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2.4. Justification of the method of study 

There are two techniques exist for evaluating the system performance: analytical 

modeling and simulation. These two techniques are used because carrying out the 

measurements on a real practical system is costly or the real system may not available. 

In general, analytical models have often high requirements in terms of computation 

costs. Therefore, simulation has been selected as a tool of study in this research. 

ProcSimity simulator has been widely used to evaluate the performance of processor 

allocation algorithms suggested for 2D mesh-connected multicomputers and also it has 

already been developed and extensively validated (ProcSimity v4.3, 1996).  
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Chapter 3  

Horizontal Partitioning Strategy (HPS): A New Non-

Contiguous Processor Allocation Strategy for 2D Mesh-

Connected Multicomputers 
 

3.1. Introduction 

There are many processor allocation strategies that had been devised for mesh-

connected multicomputers, these are classified into two types, contiguous and non-

contiguous allocation strategies. 

Contiguous strategies depend mainly on the processors that will be allocated to a job in 

2D mesh and they must be physically adjacent, and form a contiguous shape according 

to the original topology. This causes external and internal fragmentation problems. The 

restriction that jobs have to be allocated to contiguous processors reduces the chance 

of successfully allocating a job, and it is viable for the allocation strategy to fail to 

allocate a job even as there are enough number of processors available in the mesh 

(Bani Mohammad, 2008). 

In non-contiguous allocation strategies, a job can execute on multiple separated smaller 

sub-meshes rather than waiting until a single sub-mesh of the requested size and shape 

is available.  The communication overhead may be alleviated in non-contiguous 

strategies by maintaining a good degree of contiguity among the allocated processors, 

however, dropping the contiguity condition can reduce processor fragmentation and 

increase system utilization, but it is able to cause high communication overhead 

(Ababneh & Almomani, 2012; Lo, Windisch, Liu, & Nitzberg, 1997; Bani-mohammad, 

Ould-KHaoua, & Ababneh, 2007). 
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Motivated by the above observations, in this chapter, we describe a new non-

contiguous processor allocation strategy for 2D mesh-connected multicomputers, 

referred to as Horizontal Partitioning Strategy (HPS for short), the main aim of this 

strategy is to alleviate the message contention in the network, which is the primary 

purpose of any non-contagious allocation strategies. 

3.2. The Horizontal Partitioning Allocation Strategy (HPS): 

 

The 2D mesh-connected multicomputers is represented by N(W, H), where W is the 

width of mesh and H is its height. 

The coordinates of any processor (node) in the mesh is denoted by an ordered pair (x, 

y), where  0 ≤ x < W and 0 ≤ y < H. 

Figure 3.1 shows and illustrates the initial state of the 2D mesh where it is empty when 

all its processors are unallocated, and the unallocated processors are denoted by white 

circles. 

 

 : Allocated 

 : Free 

 

      

      

      

      

      

      

Figure 3-1: An empty 6×6 2D mesh 
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The incoming job request is represented by j(a, b), where the number of requested 

processors by an incoming job is a × b. 

Each row in the mesh is represented by its y coordinate and it is represented as R(y). 

The HPS allocation strategy partitions the job request based on the sub-meshes 

available for allocation in the system so as to maintain a high degree of contiguity. 

These sub-meshes are called Free-rows, and each of them represents a row of free 

processors that is equal to the width of the mesh.   

Definition 1: A block represents any row of processors that is equal to the mesh width. 

Definition 2: Free-row represents a row of free processors that is equal to the mesh 

width. 

HPS strategy rebuilds the job request to accommodate in Free-rows and it always tries 

to allocate a job request contiguously in Free-rows in order to decrease the distance 

traversed by a message, and hence reduce message contention inside the network. 

To describe the proposed strategy, we give some examples and figures were carefully 

selected to illustrate how the algorithm works. Initially, we assume that the mesh is 

empty as shown in Figure 3.2, where white circles represent the free processors, and 

we have a job that requests a sub-mesh of size 3×5. 
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A job requests 3×5 sub-mesh 
6×6 2D mesh 

 

Figure 3- 2: Allocation of 3×5 sub-mesh in 6×6 2D mesh by HPS 

 

The incoming job requests a sub-mesh of size 3×5 as shown in Figure 3-2, the job 

needs 15 processors. The proposed strategy (HPS) searches initially for the first Free-

row that equals the mesh width and this exists in the mesh system as shown in Figure 

3-3, so the proposed algorithm allocates the first six processors in the first Free-row, 

and then finds and allocates the second six processors in the second Free-row, and the 

last three processors in the request job is less than the mesh width, so the algorithm 

tries to find a block that have exactly 3 free processors in the mesh, but it fails, then it 

tries to find 3+1 free processors, and again it fails to find the requested processors. The 

process continues until it finds 3+3 free processors and allocation is done in the third 

row, as shown in Figure 3-3. 
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The last 3 processors  

The second Free-row 

The first Free-row 

 

Figure 3- 3: Allocation of 3×5 sub-mesh in 6×6 2D mesh 

Figure 3.4 shows the second example of allocation for a job request of size 3×3, where 

the job requests a 3×3 sub-mesh as shown in figure 3-4. In this example, the HPS 

strategy searches for the first Free-row that equals the mesh width. 
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 It finds the requested processors and allocates the first six processors in the fourth 

Free-row as shown in figure 3-5. The last three processors in the job request is less 

than the mesh width, so the algorithm tries to find a block that has exactly three free 

processors in the mesh, and it finds these three free processors in the third row as 

shown in figure 3-5. 

 

   

   

   

 

Figure 3- 4: Allocation of 3×3 sub-mesh in 6×6 2D mesh by HPS 

 

 

Figure 3- 5: Allocating 3×3 sub-mesh in 6×6 2D mesh 
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Figure 3.6 shows a 6×6 2D mesh after the first job has been completed and another job 

requests a sub-mesh of size 4×3. 

 

    

    

    

 

      

      

      

      

      

      

Figure 3- 6: A job requests 4×3 sub-mesh and the first job is completed 

 

The third job requests a 4×3 sub-mesh as shown in Figure 3-6, where 12 processors 

are needed to be allocated for this request. Here, the algorithm searches for the first 

Free-row that equals the mesh width, then it finds the requested block and allocates the 

first 6 processors in the first Free-row, then it finds and allocates the second 6 

processors in the next Free-row, as shown in Figure 3-7. 
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Figure 3- 7: A job request 2×2 sub-mesh and allocating previous 4×3 sub-mesh 

 

In the last example, the fourth job requests a 2×2 sub-mesh as shown in Figure 3-7, so 

the job needs four processors, and these four processors is less than the mesh width. 

HPS strategy tries to find a block that has exactly four free processors in the mesh, but 

it fails to find it. Then it tries to find 4+1 free processors, and again it fails to find the 

requested processors, the process continues until it finds 4+2 free processors and 

allocation is done in the fifth row, as shown in Figure 3-8. 

 

      

      

      

      

      

      

Figure 3- 8: Allocating 2×2 sub-mesh in 6×6 2D mesh 
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Figure 3-9 outlines the HPS allocation algorithm that has been clarified in the previous 

examples, where the time complexity of the proposed algorithm in the worst case is 

O(𝑊3 ×𝐻3). 

Procedure HPS_Allocate(a,b): 

{ 

W: Width of the mesh. 

H: Height of the mesh. 

job_size = a×b. 

Allocated_Processors = 0. 

Step 1.  if (number of free processor < job_size) 

 return failure. 

Step 2. if (job_size = Allocated_Processors) 

 return success. 

Step 3. if ((job_size  - Allocated_Processors) >= W){ 

                       search the mesh rows from first row R(0) to R(H-1) for a Free-row of 

processors. 

 if (Free-row is found){ 

 allocate W number of processors from the requested job in these Free-row. 

 Allocated_Processors+=W. 

 add allocated processors to APL.              //APL: Allocated Processors List: is 

 go to step 2.}}                                            an array of linked list that contains 

the 

                                                                                         coordinates of the allocated 

processors 

                                                                                         and its job id. 

 

Step 4 .             X= job_size - Allocated_Processors. 

search the mesh rows from first row R(0) to R(H-1) for a row that has exactly X 

number of free contiguous processors. 

if (these free processors are found){ 
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 allocate X number of processors from the requested job in these processors. 

 Allocated_Processors+ = X. 

 add allocated processors to APL. 

 go to step 2.} 

Step 5 .            Y= 1.  

Step 6 .            X= job_size - Allocated_Processors. 

search the mesh rows from first row R(0) to R(H-1) for a row that has exactly (X+Y) 

number of free contiguous processors. 

if (these free processors are found){ 

 allocate X number of processors from the requested job in these processors. 

 Allocated_Processors += X. 

 add allocated processors to APL. 

 go to step 2.} 

 else { 

 Y= Y+1. 

 If(X+Y=W) 

 go to step 7. 

 else 

 go to 6.} 

  

Step 7.  allocate the requested number of processors in row-major 

starting from R(0). 

 add allocated processors to APL. 

} end procedure 

 

 

Figure 3- 9: Outline of the HPS allocation algorithm 
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Figure 3-10 outlines the HPS deallocation algorithm. 

Procedure HPS_Deallocate(a,b): 

{ 

job_id = id of the departing job. 

for all nodes in APL[W*W]                                    //APL: Allocated Processors 

List: is 

 if (node_id =job_id)                                    an array of linked list that contains 

the 

  remove Node.                               coordinates of the allocated 

processors 

}end procedue                         and its job id. 

 

Figure 3- 10: Outline of the HPS deallocation algorithm 

3.3. HPS Time Complexity: 

HPS strategy maintains an array of linked list, Allocated Processors List (APL) that 

contains the coordinates of the allocated processors in the mesh. Where the size of 

APL array equals N or (W×H), where W, H and N are the width, the height and the size 

of the mesh, respectively. So, the time complexity for scanning it is O(N). 

The time complexity for searching a contiguous free processors in any row in the mesh 

is O(W), where W is the width of mesh. 

The HPS allocation operation for a job requests k processors is O(k×(W+H×N)), where 

H represents the number of rows and it equals the height of the mesh. 
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Chapter 4  

Simulation Results 
 

In this chapter, the simulation experiments for the proposed HPS allocation strategy as 

well as the existing well-known non-contiguous allocation strategies (Paging(0), MBS, 

and GABL) have been conducted. The performance of HPS has been compared with 

that of the existing allocation strategies Paging(0) (Lo, Windisch, Liu, & Nitzberg, 1997), 

MBS (Lo, Windisch, Liu, & Nitzberg, 1997), and GABL (Bani-mohammad, Ould-

KHaoua, & Ababneh, 2007). 

HPS allocation and de-allocation algorithms were implemented in C programming 

language, and integrated into the ProcSimity simulation tool that is widely used for 

processor allocation and job scheduling in parallel systems (ProcSimity v4.3, 1996; 

Windisch, Miller, & Lo, 1995).  

The mesh system assumed in the simulation experiments is a 2D square mesh with 

side length L. Jobs inter-arrival time has been exponentially distributed. The job 

scheduling scheme is First Come First Served (FCFS). FCFS scheduling has been 

used because our main purpose is to compare and evaluate the performance of the 

allocation strategy and because FCFS is fair. The job execution time is the time needed 

by each job for completion. The execution time of jobs rely upon the time needed for flits 

to be routed through the nodes, packet size, the number of messages to be sent, 

message contention in the network and the distances that the messages traverse (Bani 

Mohammad, 2008). Two distributions are used to generate the side lengths of the 

requested sub-meshes. The first is a uniform distribution over the range from one to the 

mesh side length L, where the width and length of a job request are generated 

independently.  
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The second is a uniform-decreasing distribution that is based on four probabilities p1, 

p2, p3 and p4, and four integers l1, l2, l3 and l4, where the probabilities that the 

width/height of a request falls in the ranges [1, l1], [l1 + 1, l2], [l2 + 1, l3] and [l3 + 1, l4] 

are p1, p2, p3 and p4, respectively. The side lengths within a range are equally likely to 

occur. The uniform-decreasing distribution represents the case where most jobs are 

small relative to the size of the system, so the simulation experiments in this research 

are for p1 = 0.4, p2 = 0.2, p3 = 0.2, p4 = 0.2, l1 = L/8, l2 = L/4, l3 = L/2, l4 = L (Lo, 

Windisch, Liu, & Nitzberg, 1997; Chang & Mohapatra, 1998; Zhu, 1992; Alsardia, 2017).  

The interconnection network for message routing is wormhole routing with ordered XY 

routing, where the number of bytes in each message (message size) is eight. Each 

simulation run consists of 1000 completed jobs per run and the number of runs is varied 

to get a confidence level of 95% and relative errors do not exceed 5% (Mohapatra, 

1998; Ni & McKinley, 1993). 

A job remains in the system until an iteration of the communication pattern is completed. 

Processors allocated to a parallel job communicate with each other according to four 

communication patterns that are considered in this research. These communication 

patterns are random, near-neighbor, one-to-all and all-to-all communication patterns 

(ProcSimity v4.3, 1996; Bani-Mohammad & Ababneh, 2013).  Table 4.1 below presents 

the parameters that have been used in the simulator.  
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Table 4.1: the system parameters used in the simulation experiments. 

Simulation Parameters Value 

Dimensions of the Mesh 16×16 

Allocation Strategy Paging(0), MBS, GABL, HPS 

Scheduling Strategy FCFS 

Job Size Distribution 

Uniform: Job widths and lengths are 

uniformly distributed over the range from 

1 to the mesh side lengths. 

Uniform Decreasing: represents the case 

where the most jobs are small relative to 

the size of the system. 

Inter-arrival Time 

Exponential with different values for the 

mean. The values are determined 

through experimentation with the 

simulator, ranged from lower values to 

higher values. 

Number of Runs 

The number of runs should be enough so 

that the confidence level is 95% that 

relative errors are below 5% of the 

means. 

Number of Jobs per Run 1000 
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The main performance parameters used are average turnaround time of jobs, and mean 

system utilization. The turnaround time of a job is the time that the job spends in the 

system from arrival to departure (Bani-mohammad, Ould-KHaoua, Ababneh, & 

Mackenzie, 2006). The system utilization is the percentage of processors that are 

utilized over a given period of time (ProcSimity v4.3, 1996). The independent variable in 

the simulation is the system load that is defined as the inverse of the mean inter-arrival 

time of jobs (Bani Mohammad, 2008).   

4.1. Turnaround Time    

In Figures 4.1 and 4.2, the average turnaround time of jobs are plotted against the 

system load for the one-to-all communication pattern. The results show that the 

performance of HPS allocation strategy is close to that of the other non-contiguous 

allocation strategies for both job size distributions considered in this research. This is 

because the number of messages generated by one-to-all is small and hence the 

communication overhead caused by this communication is not high and the ability of the 

non-contiguous allocation strategies considered in this thesis including our algorithm to 

alleviate the contention is approximately the same, which results very close in 

performance in terms of job turnaround time.  

In Figure 4.1, for example, the average turnaround time of HPS is almost the same as 

Paging(0), GABL and MBS, under the job arrival rate of 0.0009 jobs/time units. Note 

that the difference in performance between these algorithms is less than 5%, and this is 

the percentage of error in the simulation experiments, so this difference in performance 

can be ignored in such a case.      
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Figure 4.1: Average turnaround time vs. system load for the one-to-all communication 

pattern and uniform job side lengths distribution in a 16x16 mesh. 

 

In Figure 4.2, the average turnaround time of the non-contiguous allocation strategies is 

improved when the uniform-decreasing distribution is used, while the relative 

performance for all the allocation strategies remains the same. This improvement in 

performance is due to the increasing of the probability of generating small jobs relative 

to the size of the mesh system and hence the allocation for most of these jobs 

succeeds. 
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Figure 4.2: Average turnaround time vs. system load for the one-to-all communication 

pattern and uniform decreasing job side lengths distribution in a 16x16 mesh. 

In Figures 4.3 and 4.4, the average turnaround time of jobs is plotted against the system 

load for the all-to-all communication pattern. The results show that the performance of 

the HPS allocation strategy is much better than that of the other non-contiguous 

allocation strategies for both job size distributions considered in this research. This is 

because HPS is better than the previous non-contiguous allocation strategies in 

alleviating message contention when the communication overhead is high as in all-to-all 

communication. This improvement in performance is achieved by maintaining some 

degree of contiguity among allocated processors by allocating the job request in Free-

rows each of them represents a row of free processors that is equal to the mesh width. 

In Figure 4.3, for example, the average turnaround time of HPS is 79%, 69% and 40% 

of that of GABL, Paging(0) and MBS, respectively, under the job arrival rate of 0.0001 

jobs/time units.  
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Figure 4.3: Average turnaround time vs. system load for the all-to-all communication 

pattern and uniform job side lengths distribution in a 16x16 mesh. 

In Figure 4.4, the average turnaround times of all the non-contiguous allocation 

strategies are improved again, this is because the increased probability of small jobs to 

be allocated (relative to mesh size). When uniform decreasing distribution is used, the 

average turnaround time of HPS is 72%, 79% and 56% of that of GABL, Paging(0) and 

MBS, respectively, under the job arrival rate of 0.00055 jobs/time units. In general, HPS 

allocates the job request along the rows of the mesh, and relatively the small jobs can 

be allocated in a less number of rows, which decreases the message contention  
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between different jobs. Furthermore, HPS has the ability to allocate jobs with number of 

processors that is smaller than or equal to the mesh width in a way that results in less 

communication overhead and thus reduces the contention among different small jobs. 

 

Figure 4.4: Average turnaround time vs. system load for the all-to-all communication 

pattern and uniform decreasing job side lengths distribution in a 16x16 mesh. 

In Figures 4.5 and 4.6, the average turnaround time of jobs is plotted against the system 

load for the random communication pattern. The results show that the performance of 

HPS allocation strategy is close to that of the other non-contiguous allocation strategies 

for both job size distributions considered in this research. 
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 In Figure 4.5, for example, the average turnaround time of HPS is almost the same as 

Paging(0) and MBS, under the job arrival rate of 0.06 jobs/time units, and the relative 

difference in turnaround times between HPS and GABL is 9% in favor for GABL. Note 

that the difference between the performances of these algorithms is less than 5%, and 

this is the percentage of error allowed in the simulation experiments and it can be 

ignored.  

 

Figure 4.5: Average turnaround time vs. system load for the random communication 

pattern and uniform job side lengths distribution in a 16x16 mesh. 

 

In Figure 4.6, the average turnaround time of the non-contiguous allocation strategies is 

improved again, when the uniform decreasing distribution is used. This improvement in 

performance is due to the increasing of the probability of generating small jobs relative 

to the size of the mesh system and hence the allocation for most of these jobs 

succeeds.   
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Figure 4.6: Average turnaround time vs. system load for the random communication 

pattern and uniform decreasing job side lengths distribution in a 16x16 mesh. 

 

In Figures 4.7 and 4.8, the average turnaround time of jobs is plotted against the system 

load for the near-neighbor communication pattern. The results show that the 

performance of the HPS allocation strategy is not better than that of the other non-

contiguous allocation strategies considered in this thesis. In Figure 4.7, for example, the 

average turnaround time of HPS is very close to that of the Paging(0) and MBS when 

the job arrival rate is 0.009 jobs/time units. In Figure 4.8, the performance of HPS is 

very close to the that of Paging(0). This is because the near-neighbor communication 

pattern is suitable for the strategies that keep a high degree of contiguity between the 

allocated processors and at the same time maintain a rectangular form of the allocated 

sub-meshes, where each node allocated to a job communicates with its left, right, up 

and down neighbors within the same job. GABL performs better than other non-

contiguous allocation strategies under both job size distributions considered, and this is 

because GABL allocates sub-meshes in a rectangular form and it tries to maintain a 

high degree of contiguity among the allocated processors. 
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Figure 4.7: Average turnaround time vs. system load for the near-neighbor 

communication pattern and uniform job side lengths distribution in a 16x16 mesh. 

 

Figure 4.8: Average turnaround time vs. system load for the near-neighbor 

communication pattern and uniform decreasing job side lengths distribution in a 16x16 

mesh.  
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4.2. System Utilization 

In Figures (4.9-4.16), the mean system utilization is plotted against the system load for 

the four communication patterns, one-to-all, all-to-all, random and near-neighbor using 

the FCFS scheduling strategy, and the two job size distributions considered in this 

research. The results show that the mean system utilization for all non-contiguous 

allocation strategies is approximately the same for both job size distributions, at heavy 

system load values. The load values ranged from moderate to heavy system loads, 

where heavy loads cause the waiting queue to be filled very early that allow the 

allocation strategies to achieve a higher system utilization that ranges from 75% to 78% 

and from 81% to 85%, for uniform and uniform-decreasing job size distributions, 

respectively. This is because the non-contiguous allocation strategies considered in this 

thesis have the same ability to eliminate both internal and external processor 

fragmentation. They always succeed to allocate processors to a job when the number of 

free processors is greater than or equal to the allocation request.  

 

Figure 4.9: Mean system utilization vs. system load for the one-to-all communication 

pattern and uniform job side lengths distribution in a 16x16 mesh. 
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Figure 4.10: Mean system utilization vs. system load for the one-to-all communication 

pattern and uniform decreasing job side lengths distribution in a 16x16 mesh. 

 

Figure 4.11: Mean system utilization vs. system load for the all-to-all communication 

pattern and uniform job side lengths distribution in a 16x16 mesh. 
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Figure 4.12: Mean system utilization vs. system load for the all-to-all communication 

pattern and uniform decreasing job side lengths distribution in a 16x16 mesh. 
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Figure 4.13: Mean system utilization vs. system load for the random communication 

pattern and uniform job side lengths distribution in a 16x16 mesh. 

 

 

Figure 4.14: Mean system utilization vs. system load for the random communication 

pattern and uniform decreasing job side lengths distribution in a 16x16 mesh. 
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Figure 4.15: Mean system utilization vs. system load for the near-neighbor 

communication pattern and uniform job side lengths distribution in a 16x16 mesh. 

 

 

Figure 4.16: Mean system utilization vs. system load for the near-neighbor 

communication pattern and uniform decreasing job side lengths distribution in a 16x16 

mesh.  
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Chapter 5  

Conclusion and Future Work 
 

5.1. Conclusion 

In recent years, processor allocation in distributed-memory multicomputers became the 

subject of much research especially that is based on the mesh network. Processor 

allocation strategies that had been devised for mesh-connected multicomputers are 

classified into two types, contiguous and non-contiguous allocation strategies. 

In contiguous strategies, the processors that will be allocated to a job must be physically 

adjacent, and form a contiguous shape according to the original topology. Contiguous 

allocation suffers from both external and internal fragmentation problems. External 

fragmentation occurs when there are free processors enough in quantity to satisfy the 

job request, but they are not allocated to it because they are not contiguous. Internal 

fragmentation occurs if the strategy allocates more processors than required (Lo, 

Windisch, Liu, & Nitzberg, 1997; Bani Mohammad, 2008). 

In non-contiguous allocation strategies, the job request can execute on multiple 

separated smaller sub-meshes rather than waiting until a single sub-mesh of the 

requested size and shape is available.  The main objective of these strategies is to 

maintain minimal communication overhead without affecting the overall system 

performance and this is achieved by maintaining a good degree of contiguity among the 

allocated processors, however, dropping the contiguity condition can reduce processor 

fragmentation and increase system utilization, but it causes high communication 

overhead (Bani Mohammad, 2008; Bani-mohammad, Ould-KHaoua, & Ababneh, 2007). 

In general, the aim of any allocation strategy is to minimize the average turnaround time 

and maximizing the system utilization (Lo, Windisch, Liu, & Nitzberg, 1997; Mohapatra, 

1998; Bani Mohammad, 2008). 
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Motivated by the above observations, a new non-contiguous processor allocation 

strategy for 2D mesh-connected multicomputers, referred to as Horizontal Partitioning 

Strategy (HPS for short) has been proposed. The main aim of this strategy is to alleviate 

the message contention in the network, and thus improves system performance in 

terms of average turnaround time of jobs, and this is the main purpose of any non-

contagious allocation strategy. 

The HPS allocation strategy partitions the job request based on the rows available for 

allocation in the system so as to maintain some degree of contiguity. These sub-

meshes are called Free-rows, and each of them represents a row of free processors 

that is equal to the width of the mesh. HPS strategy rebuilds the job request to be 

accommodated in the available Free-rows and it always tries to allocate a job request 

contiguously in Free-rows in order to decrease the distance traversed by a message, 

and hence reduce message contention inside the network. 

The simulation results of the proposed HPS allocation strategy have been carried out, 

and  compared with those of the existing well-known non-contiguous allocation 

strategies Paging(0) (Lo, Windisch, Liu, & Nitzberg, 1997), MBS (Lo, Windisch, Liu, & 

Nitzberg, 1997), and GABL (Bani-mohammad, Ould-KHaoua, Ababneh, & Mackenzie, 

2006). The results show that the performance of the HPS allocation strategy is much 

better than that of all other non-contiguous allocation strategies for both job size 

distributions considered in this research when the all-to-all communication pattern is 

used. This is because HPS has greater ability than the previous non-contiguous 

allocation strategies in alleviating message contention in the network through 

maintaining some degree of contiguity among allocated processors.  
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The results also show that the performance of HPS is close to that of the non-

contiguous allocation strategies considered when one-to-all and random communication 

patterns are used. This is because in these communication patterns, the number of 

messages generated by jobs is small as compared with the all-to-all communication 

pattern and thus all the non-contiguous allocation strategies considered in this thesis 

including our proposed strategy have the same ability to alleviate the contention inside 

the network. However, the performance of HPS is not better than that of the other non-

contiguous allocation strategies considered when the near-neighbor communication 

pattern is used, and this is because the near-neighbor communication pattern is suitable 

for the strategies that keep a high degree of contiguity between the allocated 

processors and maintain a rectangular form of the allocated sub-meshes (Alsardia, 

2017). Moreover, HPS exhibits high system utilization as it manages to eliminate both 

internal and external fragmentation. 

5.2. Directions for the Future Work 

The aim of any allocation strategy is to minimize the average turnaround time and 

maximize the system utilization. For 2D mesh connected multicomputers, the simulation 

results show that the performance of the proposed HPS allocation strategy is much 

better than that of the previous non-contiguous allocation strategies considered in this 

research for both job size distributions considered when the all-to-all communication 

pattern is used. As a continuation of this research in the future, it would be interesting to 

adapt the proposed HPS non-contiguous allocation strategy to be applicable for the 3D 

mesh-connected multicomputer. 
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 الملخص
 

 الابعاد نائيةث الشبكية الحواسيب متعددات في الافقي التقسيم باستخدام المتجاور غير التخصيص استراتيجية

 المتجاور: ئيسيينر  نوعين إلى الابعاد ثنائية الشبكية الحواسيب عدداتمت في المعالجات تخصيص استراتيجيات تصنف

 اورةمتج طلبلل تخصيصها يتم التي المعالجات تكون أن المتجاور التخصيص ستراتيجياتا في يشترط. متجاور والغير

 لذلك تيجةنو  الاصلي، الشبكة لشكل مشابه ما لطلب المخصصة المعالجات شبكة شكل يكون ان يجب كما فيزيائيا،

 ،جاورتم غیرال التخصيص استراتيجيات في بينما ،.داخليةالو  خارجيةال الكسيرات مشاكل  من الاستراتيجيات هذه تعاني

 حتی الانتظار من بدلا وذلك البعض، بعضها عن منفصله شبكات في وتخصيصه اصغر اجزاء الى طلبال تقسيم  یمکنف

 .الاصلي للطلب لوالشک الحجم نفس لها معالجات شبكة توفري

 في لبعضا بعضها عن الطرق هذه تختلف حيث ،تجاورالم غير للتخصيص المقترحة الاستراتيجيات من العديد هناك

 .المخصصة المعالجات بين التجاور لدرجة متفاوتة وبنسب الشبكة، في للمعالجات التخصيص طريقة

 ثنائية الشبكية الحواسيب متعددات في للمعالجات جاورالمت غير للتخصيص جديدة استراتيجية اقتراح البحث هذا في تم

 التخصيص طلب تقسيم الطريقة هذه في يتم حيث ،(HPS) الأفقي التقسيم باستراتيجية إليها يشار والتي ،الابعاد

 التجاور نم عالية درجة على للحفاظ وذلك ،النظام في للتخصيص المتاحة الأفقية المعالجات أساس على للمعالجات

 من صف ثليم منها كلو  حرة،ال كتللبا الأفقية المعالجات هذه تسمىو  الواحدة، للمهمة المخصصة المعالجات بين فيما

 التخصيص طلب شكل تغيير على الافقي التقسيم استراتيجية تقوم. الشبكة عرض حجمها ساويي التي الحرة المعالجات

 تقليل أجل نم حرةال كتلال في متجاور بشكل طلبال تخصيص دائما حاولت كما ،حرةال كتلال في احتوائه يمكن بحيث

 في يسهم مما ،بكةالش داخل التزاحم تقليل وبالتالي ،النظام في المعالجات بين للانتقال الرسائل تحتاجها التي المسافة

 .النظام في المهام مكوث معدل حيث من الأداء تحسين

  



www.manaraa.com

 
 

52 
 

 

 وتبين المحاكاة، خدامباست المعروفة المتجاور غير خصيصالت استراتيجيات مع الافقي التقسيم استراتيجية أداء مقارنة تم

 تم التي لأخرىا المتجاور غير التخصيص استراتيجيات من بكثير أفضل الافقي التقسيم استراتيجية أداء أن النتائج

 على قدرتهال لنظامل اعالي اشغالا تعطي الافقي التقسيم استراتيجية فإن ذلك، على وعلاوة البحث، هذا في دراستها

 تم لتيا الأخرى المتجاور غير التخصيص استراتيجيات في الحال هو كما والخارجية الداخلية الكسيرات من التخلص

 .دراستها


